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1 Introduction 

In this note we obtain the envelope parameters for linear coupled motion 
in terms of the transfer matrix for one turn around a machine. The 
treatment is equivalent to  others found in the literature, but follows more 
closely that of Courant and Snyder for the case of uncoupled motion. 

2 The One-Turn Transfer Matrix 

We shall use T to  denote the one-turn transfer matrix, and in this section 
we examine its symplectic nature. By definition, the four-by-four matrix T 
is symplectic if 

T ~ S T  = s, (1) 

where 

Taking the inverse of both sides of (1) we obtain T-'S(Tt)-' = S and 
therefore 

s = T S T ~  (3) 

which is an equivalent form of the symplectic condition. Now, following 
Courant and Snyder [l], we define the symplectic conjugate of a 
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two-by-two or four-by-fotu: matrix A to be 
- 
A = -SAfS, (4) 

where S is given by (2) for the case of four-by-four matricies. For 
two-by-two matricies we have 

and it follows that (for two-by-two matricies) 

A'IT= 'ITA = (AllA22 - A12A21)I = IAII, 

A + X = (All + A22)I = Tk( A)I. 

(6) 

(7) 

(8) 

Using (1) and (3) we have 
- 
TT = -ST~ST = -s2 = I, TT = -TST~S = -s2 = I 

and therefore T = T-l if T is symplectic. Now writing 

T = ( "  m N '  " )  (9) 

where M, N, m, n are two-by-two matricies, we have 

M n  M i i i  Mhl+nii  MEi+nW 
T T = (  m N  ) ( -  fix ) = (  mM+Nfi  m m + N N  

EUlCl  ..=(a M E  .)( M n  ) = ( -  MM+tiim Mn+iSN 
m N  i i M + x m  fin+NN 

and comparing TT = TT = I with these equations we find 

and 
( M I + ( n l = l ,  INl+lml=l, M E + n ~ = O .  (13) 

Equations (12) and (13) are actually equivalent, and, as shown by Brown 
and Servranckx [2], they impose a total of 6 independent constraints on 
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the 16 matrix elements of T. The four-by-four symplectic matrix, T, is 
therefore specified by 10 independent parameters. Equations (12) and (13) 
also imply the relations 

IMI = IN, 14 = Inl. (14) 

Other properties of symplectic matricies, including the nature of their 
eigenvalues, are discussed in Refs. [l] and [3]. 

3 Reduction to Block-Diagonal Form 

We shall assume that the four eigenvalues of T are distinct and lie on the 
unit circle in the complex plane. (This is generally true for the case of 
stable motion away from any linear resonances.) Then, as shown by Berz 
[4], the assumption of distinct eigenvalues ensures that T can be expressed 
in the form 

(15) 
A 0  

T = RUR-', . = ( O  B )  

where A and B are two-by-two matricies and U and R are symplectic. 
Since U is symplectic we have [AI = IBI = 1 and it follows that U is 
specified by six independent parameters. The additional assumption that 
the eigenvalues lie on the unit circle in the complex plane, allows one to 
define Courant-Snyder parameters such that 

COS+l  = (All + A22)/2, COS$2 = (&1+ B22)/2, (16) 

PI sin& = 4 2 ,  P 2  sin& = B12, (18) 

71 sin$1 = -A21, 7 2  sin+2 = -B21, (19) 

ai sin& = (AH - A22)/2, a 2  sin$2 = (&I - B22)/2, (17) 

where $1 and $2 are real, sin+' and sin& are nonzero, and PI and /32 are 
positive. Our assumptions also imply cos $1 # cos & and therefore 
%(A) # Tr(B). Thus A and B are of the form 

A = Icos$l+ Js inq1,  B = Icos+2 + Ksin& (20) 

where 

I = (  1 0  ) ,  J = (  " ) ,  K = (  a2 ' 2 )  (21) 
0 1  -71 -a1 -72 - a 2  
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and since JAI = JBJ = 1 we have 

Ply1 - a: = 1, P 2 7 2  - ai = 1, J2 = -I, K2 = -I. (22) 

In addition to  the matricies J and K it will be useful to  define the matricies 

which have only positive eigenvalues and are therefore positive-definite. 

Now, since the matrix U contains only six independent parameters, the 
remaining four parameters needed to completely specify T are contained in 
the matrix R. In the treatments of linear coupled motion given by 
Edwards and Teng [5, 61, and by Roser [7], R is expressed explicitly in 
terms of four independent parameters which, in turn, are expressed in 
terms of the matrix elements of T. This proceedure could be followed here; 
however, we want to show that the envelope parameters do not depend on 
any particular form chosen for R. Thus we write R in the general form 

R = ( '  V W '  " )  (24) 

where P,  Q, V, and W are two-by-two matricies. Since R is symplectic, 
we have 

IPJ + IVI = 1, JWI + JQI = 1, FQ +VW = 0 (25) 

(P( + IQI = 1, IWl+ (VI = 1, Pv+ Qw = 0, (26) 

(27) 

and defining D = lPl, we also have 

JWI = IPI = D, IVJ = IQJ = 1 - D. 

We now carry out some algebraic manipulations which yield expressions 
for the four matricies, PAF, WBW, QBQ, and VAV. In the following 
section we show that these matricies contain the desired envelope 
parameters. Writing 

and carrying out the matrix multiplications we find 

M = PAF -t QBQ, N = VAV + WBW, (29) 
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m = VAP + WBQ, n = PAV + QBW. 
Let us now define 

A = Tr(A), B = Tr(B), M = Tr(M), N = Tr(N) 

and 
T = Tr(M- N) = M - N ,  U = Tr(A- B) A - B .  

Then taking the trace of equations (29), and using (27), we have 

M =  D A +  (1 - D ) B ,  N = (1 - D ) A + D B .  

Adding and subtracting these equations we obtain 

M + N = A + B ,  M - N = T = ( 2 0  - 1)U. 

Thus, using the first of equations (34) in (16), we have 

1 1 
2 

2 cos $1 = + N + U), 2 cos $2 = - ( M  + N - U ) ,  

and solving the last of equations (34) for D we have 

U2 - T2 
4u2 - , D ( 1 - D ) =  U + T  D = -  

2 u  

(Note that Tr(A) # Tr(B) and therefore U # 0.) Now adding rm and E we 
have 

m + i i = V ( A + K ) P + W ( B + B ) Q = A V P + B W Q ,  (37) 

and using (26) we obtain 

m + n =  U V P =  -uwQ. (38) 

(39) 

U 2 = T 2 + 4 1 m f n J .  (40) 

Talring the determinant of this equation, and using (27), we have 

Im+ E [ =  u~~VIIPI = U ~ D ( I  - D). 

Then using (36) we obtain 

Thus we have an expression for U which contains only the matrix elements 
of T. This can be used in (35) to obtain cos $1 and cos $2, and in (36) to  
obtain D. 
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Now multiplying the second of equations (30) by (38), and using (27) and 
(29), we obtain 

n(m + Ti) = UPAVVF - UQBwWQ (41) 
= U(1- D)PAF- UDQBQ 
= UPAP-UDM 

and 

(m + E)n = UVPPAV - UWQQBW 
= UDVAV- U(1-  D)WBW 
= UDN-UWBW. 

Solving these equations for PAF and WBW we find 

(43) 
1 
U PAP = DM + -n(m + Ti), 

(44) 
1 
U WBW = DN - -(m+ E)n, 

and using (29) we also have 

(45) 

(46) 

- 1 
U 
1 
U 

QBQ = M - PAF = (1 - D)M - -n(m+ E), 

VAV = N - WBW = (1 - D)N + -(m + E)n. 

These equations, together with (36) and (40), show that the four matricies, 
PAP, WBW, QBQ, and VAV, depend only on the matrix elements of T 
and are independent of the particular form chosen for the matrix R. 

4 Envelope Parameters 

Let us now define matricies Ex such that 

P F P ~ ,  = Q G Q ~ ,  E , ~  = VFV+, = W G W ~ .  (47) 

Then it follows from (20), (23), and (27) that 

PAF = DI COS $1 + E,1 S sin $1, (48) 
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QBQ = (I - D)I COS $2 + Es2S sin$2, (49) 

VAT= (1-D)Icos$1+EV1Ssin$1, (50) 

WBW = DI cos$2 -I- Ey2S sin&, (51) 

and, using (43-46) and (35) in these equations, we see that the matricies 
Ex can be expressed entirely in terms of the matrix elements of T and are 
independent of the particular form chosen for R. In this section we show 
that these matricies contain the desired envelope parameters. 

Let To and T be the transfer matricies for one turn around the machine 
starting at so and s respectively, and let M be the transfer matrix from so 
to 5.  Then we have 

T = MToM-', (52) 

and it follows that To and T have the same eigenvalues which we have 
assumed are all distinct and lie on the unit circle in the complex plane. 
Thus we can write 

T~ = R,,u,,R;~, T = RUR-~  (53) 

where Ro, R, UO, and U are symplectic and 

A0 0 A 0  
u o = ( O  B o ) '  .=( 0 B ) '  (54) 

Ao=Icos$1+J~osin$1, Bo =Icos$2+Kosin$2 (55) 

(56) 

F o z - J o S ,  Go=-KoS, F = - J S ,  G = - K S  (57) 

A = I cos $1 + J sin $1, B = I cos $2 + K sin$2. 

As in the previous section we define matricies 

which are positive-definite and have unit determinant. Now using (53) in 
(52) we have 

and therefore 

where 

RUR-~ = MR,,U~R;~M-~ 

u = R-~MR~U, ,R;~M-~R = LU,,L-~ 
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Thus L produces a similarity transformation which transforms UO into U. 
We now show that, under OUT assumptions, L must be block-diagonal. 
Writing (59) as UL = LUo we find 

and therefore 
AIL11 = L1AoL1, BlLzl = L2BoL2 (62) 

A1121 = 12B012, Bllll = 11Aoii. (63) 
and 

Now, if 1111 # 0 or if 1121 # 0, then either B and Ao, or A and Bo are 
related by a similarity transformation. It then follows that A and B have 
the sam.e eigenvalues, which contradicts our assumption that the 
eigenvalues of T are all distinct. Thus we must have 

1111 = 1121 = 0 

and since L is symplectic we then have 

lLll = IL21 = 1. 

Thus (62) and (63) become 

A = L1AoE1, B = L2BoL2, l2BoT2 = 0,  11Ao& = 0 

and using (55-57) in (66) we have 

F = LIFO L,, i G = L2Go L2 t 

and 

Now since Fo ancr GO are real, symmetric, and positive d e h , e  one can 
show, by going to  the representations in which Fo and GO are diagonal, 
that (68) implies 

11 = 12 = 0. 

Thus L is block-diagonal and we can write 

(69) 
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Now let 20, a$, yo, and yh be the horizontal and vertical positions and 
angles (or cononical momenta) of a beam particle at so. Then the positions 
and angles at s are given by 

where 

Z o =  (:$ xo= ($  Yo= (z), (72) 

z = ( ; ) ,  x = ( : J ,  . = ( i f ) .  (73) 

Defining new coordinates 

h 
we then have 

Z = RZ, Zo = RoZo (75) 

(76) 
and 

2 = R-12 = R - ~ M Z ~  = R - ~ M R ~ ~ ~ .  

Thus 
2 = LZO (77) 

and we see that, in terms of the new coordinates, L is the transfer matrix 
from so to  s. Writing 

where a, 9, 30, 90 are two-dimensional vectors, we then have 

3 = L&, P = L&. (79) 

Thus, in terms of the new coordinates, the motion is decoupled and it 
follows from (67) that 

gtF-1g - gfF-1g  - 
0 0 O - - 1  - 

and 
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Here we see that, since Fo, Go, F, and G are positive definite, 20, PO, %, 
and 9 are constrained to  lie on ellipses, and €1 and €2 are the 
Courant-Snyder invariants of the motion. 

Now using (24) in first of equations (75) we have 

X=P%+QQP,  Y = V % + W T  

and therefore 
x=x1+x2, Y = Y 1 + Y 2  

h 
where 

Xi = Pa, X2 = QT, Y1= VX, Y2 = WT. 

Thus, if ]PI # 0 and IQI # 0, the matricies PFPt, QGQt, VFVt, 
WGWf all have inverses and we have 

Xf(PFPt)-lX1 = gtF-'% = €1, 

X$(QGQt)-'X2 = YtG-"j;i = €2, 

Yf(VFVt)-lY1 = %$F-'% = €1, 

h 

Y;(WGWt)-lY2 = QP'G-lT = E 2. 

Using (47) we can then write 

t -1 t -1 X,E,, x1= €1, X,E,, x2 = E2 

YIE,, t -1 Y1 = €1, Y;Ei.Y2 = €2. 

Then, since F and G are positive-definite, it follows that the matricies Ex 
are positive-definite and equations (89-90) therefore describe ellipses. 
Thus XI, Xs, Y1, Y2 are each constrained to lie on an ellipse, and 
equations (83-90) show that the positions and angles z, z', y, y' me given 
by the superposition of two modes of oscillation which we shall label 1 and 
2. In mode 1 we have €1 # 0 and €2 = 0, and it follows that X2 = Y2 = 0 
and therefore X = X1 and Y = Y1. Similarly, in mode 2 we have ~2 # 0 
and €1 = 0, and it follows that X = X2 and Y = Y2. Thus, for each single 
mode of oscillation, the motion in each plane is constrained to lie on a 
single ellipse. If €1 and €2 are both nonzero, then both modes of oscillation 
me present and the motion in each plane is characterized by the 
superposition of two ellipses. This characterization of the motion in terms 
of two ellipses was first derived by Ripken [8, 91. 
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Now, since the matricies EA are symmetric, we can write 

P A  -aX 
E A =  ( - a x  J '  

where 
pzly21 - a:l = D2, P22722 - a 2 2  = (1 - a2 
pylyyl - ai1 = (1 - D ) 2 ,  Py27y2 - 4 2  = 02* 

Then writing 

and we see that PA and y~ are the desired envelope parameters. These are 
analogous to  the Courant-Snyder parameters for uncoupled motion, but 
their normalization is given by equations (92-93) rather than 

Equations (85-100) are valid only if \PI # 0 and I & [  # 0. For the case in 
which either JPJ = D = 0 or JQJ = 1 - D = 0 the corresponding ellipses 
degenerate into line segments. 

px7x - a; = 1. 
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5 Summary 

We summarize our results with a brief recipe for calculating the envelope 
parameters at s: 

1) The f i s t  of two ingredients is the transfer matrix, To, for one turn 
around a machine starting at  some point, so, on the design orbit. The 
second ingredient is the transfer matrix, M ,  from so to some other point, 
s, on the design orbit. 

2) Then the transfer matrix for one turn starting at s is given by 
T = MToM-l. 
3) Using equations (40) and (36) we obtain the parameters U and D in 
terms of the matrix elements of T. Equations (35) give cos $1 and cos $2. 

4) The matricies PAF, WBW, QB&, and VAT are then calculated 
using equations (43-46). 

5) Finally, the matricies Ex are calculated from equations (48-51). (The 
signs of sin& and sin+z are determined by the requirement that the 
parameters be positive.) 

Thus, the envelope parameters are given entirely in terms of the matrix 
elements of T, and are independent of the form chosen for R. The 
reduction of T to block-diagonal form therefore serves only as a scaffold for 
constructing the envelope parameters. It is worth noting here that XI, X2, 

Y1, and Y2 are also independent of the form chosen for R. This can be 
seen by substituting the f i s t  of equations (74) into (84). Using (27) and 
(38) we then have 

(101) 
1 
U XI = P(FX + VY) = DX + -(m+ n)Y, 

(102) 
1 
U X2 = Q(&X + WY) = (1 - D)X - -(EX+ n)Y, 

(103) 
1 

~ 1 =  V(FX + VY) = (I - D)Y + e("+ m)X, 
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